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We describe an approach based on projection methods for the 
calculation of angle-bending and torsional forces in molecular 
dynamics simulations. These forces are important in molecular 
dynamics simulations of systems containing polyatomic molecules. 
A significant speedup can be achieved using projection methods, 
because they require fewer high-cost operations than traditional cross- 
product methods. Initial tests on a Cray X-MP show factors of 7 and 2.5 
increase in speed for the calculation of angle-bending and torsional 
forces, respectively, relative to a comparable cross-product formula- 
tion. Our analysis of projection methods for calculating intramolecular 
angle-dependent forces provides a framework for the development of 
efficient programming structures. 0 1992 Academic Press, Inc 

I. INTRODUCTION 

In molecular dynamics simulations of systems consisting 
of polyatomic molecules, e.g., polymers or lipids, modelling 
the energy transfer between intermolecular and intra- 
molecular degrees-of-freedom is necessary if accurate 
molecular parameters, e.g., order parameters and self-diffu- 
sion rates, are to be extracted [ 11. In the classical represen- 
tation [2], intramolecular degrees-of-freedom are decom- 
posed into four general types of interactions for which both 
ab initio quantum mechanical and experimental, e.g., spec- 
troscopic, data can be obtained. These interactions are: 
bond-stretching, bond-angle-bending, torsion, and out-of- 
plane wag. We do not treat out-of-plane wag in this 
analysis, since we concern ourselves only with linearly 
linked molecules. Further, out-of-plane wag may be 
handled in a manner similar to torsion. 

While the calculation of bond-stretching is easily vec- 
torized, there are inherent limitations on the vectorization 
of angle-bending and torsional force evaluations. These are 
due to the many-body nature of the forces, as well as to the 
multiple-linkage between particles. Given these inherent 
limitations, the task, then, is to seek optimal partitioning of 
the problem for efficient vector computation. 

In addition to the problem of multiple-linkage, the com- 

putational cost of evaluating angle-dependent forces is 
relatively high, since these forces are non-central and, there- 
fore, require addition operations to evaluate their direction 
cosines. Typical procedures for calculating angle-dependent 
forces involve cross-products. Cross-product procedures 
can be vectorized by using gather-scatter operations, which 
address the linkage problem by using linked-lists; however, 
projection methods are more efficient. Projection methods 
require fewer high-cost operations, e.g., square roots and 
divisions, and incorporate efficient programming structures 
for vector computation. Initial tests show factors of 7 and 
2.5 increase in speed for the calculation of angle-bending 
and torsional forces, respectively, relative to a comparable 
cross-product formulation on a Cray X-MP. 

We describe in this paper a method for calculating angle- 
dependent forces in molecular dynamics simulations that 
represents an efficient partitioning of the problem for vector 
computation. The paper is organized as follows. In 
Section II, we present the formulation of the problem. In 
Section III, we describe our algorithm for numerically 
evaluating the forces. Section IV presents timings and 
the results of comparisons of our method to traditional 
methods. 

II. FORMULATION 

A. Background 

In the theory of molecular vibrations [2], internal 
degrees of freedom of a linearly linked molecule, e.g., 
decane, (C,,H,,), are generally decomposed into three 
independent modes: bond-stretching, bond-angle-bending, 
and torsion. These are 2-, 3- and 4-body interactions, 
respectively. Vibrational and angle-bending modes are har- 
monic in nature and have characteristic frequencies which 
are high relative to those of torsional and intermolecular 
modes. They are usually represented by a potential function 
of the form 

(1) 

17 OOZI-9991/92 $5.00 

Copyright 0 1992 by Academic Press, Inc. 
AI1 rights of reproduction in any form reserved. 



18 DUNN ET AL. 

where IC is a stiffness parameter and q is a generalized coor- 
dinate with its origin at the equilibrium point. In contrast, 
torsion is a relatively low-frequency mode and can be 
represented by a function of the form 

V(d) = i cli cod(~), 
i=O 

(2) 

where the coefficients, cli, are determined empirically and 4 
is the dihedral angle (see Fig. 2) specified in a coordinate 
system internal to the 4-body system. Note that Eq. (2) is 
the power series rather than the Fourier series definition. 

There has been considerable interest in the decoupling of 
internal and rotational modes in the study of molecular 
vibrations [24]. Rotational modes are those which involve 
the rotation of the entire molecule about a principal axis of 
inertia. This interest is due to the computational difficulty 
associated with calculating molecular motions, i.e., solving 
the wave equation, when the terms which depend on rota- 
tion cannot be separated from those which depend on inter- 
nal degrees-of-freedom. Therefore, some effort has been 
spent in defining an internal coordinate system in which 
they are approximately decoupled. We require that our 
simulation conserve total energy, as opposed to readjusting 
the kinetic energy by resealing the center-of-mass velocities. 
Since the integration of differential equations depending on 
higher frequency modes generally requires a smaller 
timestep, we require that the internal modes be decoupled 
from the rotational modes, i.e., that the equations of motion 
of the center-of-mass not be stiff. This allows us to use a 
larger timestep for intermolecular modes. We will, therefore, 
define an internal coordinate system where rotation and 
vibration are approximately decoupled, and show that, in 
the case of a simulation where only torsional degrees-of- 
freedom are taken into account, they are completely 
decoupled. 

Let ra be the position of the ccth particle in the internal 
coordinate system and mar be its mass. Further, let this coor- 
dinate system be fixed at the center-of-mass of the n-body 
system, i.e., satisfy the condition 

n 

1 m,r,=O. (3) 
a=1 

Let the equilibrium positions of the vibrational modes in 
this system be denoted by d, and correspond to the 
positions where all internal contributions to the potential 
energy are zero. 

There are two conditions, then, that must be satisfied in 

angular momentum of the equilibrium configuration is 
zero [4], 

n 

c m,da x v, = 0, (41 
a=1 

where v, is the velocity in the internal coordinate system. 
Second, ail intramolecular frequencies must be of the same 
order of magnitude. Further, they must be large enough 
such that first-order kinetic energy terms in angular 
momentum are of the same order of magnitude or less 
than second-order terms [3] in the Hamiltonian. This is 
equivalent to the condition that vibrational amplitudes 
be small enough that the inertial tensor is, essentially, a 
constant of the motion [3]. That is, each particle of the 
n-body system must remain close to d,. The form of the 
kinetic energy is, ignoring center-of-mass momentum [2], 

n 

2T=w. 1 (m,v,xr,) a=1 
+ f (oxr,)‘+ i m,uz, 

a=1 x=1 
(5) 

where o is the rotational velocity of the n-body system. The 
first- and second-order terms are the first and second terms 
in Eq. (5), respectively. 

The condition, Eq. (4), is satisfied by using the center-of- 
momentum system for the internal coordinate system. This 
choice acts as an implicit holonomic constraint on the rota- 
tion and translation of the center-of-mass. We ensure that 
the second condition is satisfied by constraining the inter- 
particle distances and bond-angles instead of using a stiff 
harmonic potential to model bond-stretching and angle- 
bending. We use for this the MSHAKE [S, 61 constraint 
algorithm. Given Eq. (4) the first-order term in Eq. (5) 
reduces to w . Ci= i (mcrv, x q,), where q = r - d. Since we 
consider only the torsional degree-of-freedom, v, = 4, so 
that v, x r, = 0 for all cc This means that both linear and 
angular momenta are constants of the motion, i.e., zero in 
the internal coordinate system of each molecule. In a 
simulation with complete detail, the bond-angle-bending 
potential would be modelled by a stiff harmonic potential. 
Since we assume infinitesimal displacements, the internal 
degrees-of-freedom are nearly orthogonal. Therefore, the 
first-order term in angular momentum involves only cross- 
terms between vibrational velocities and displacements, 
which will be small. Next, we define the angle-bending and 
torsional forces. 

B. Angle-Bending Force Definition 

order to decouple the rotational and intramolecular modes. Angle-bending is equivalent [2] to the set of 
First, the internal coordinates must be chosen such that the (infinitesimal) displacements stl, st2, and st3 shown in 
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Fig. 1. We will refer to particles 1 and 2 as the end-particles, 
and to particle 3 as the pivot-particle. The magnitudes s,, 
and s,* are inversely proportional to the lengths of the 
corresponding bonds, 

s 11 = r3] 
1 and s,~ = r3;‘. (6) 

Further, displacements must satisfy the relation 

s13= - S II -s*z. (7) 

The s vectors are [3] 

1 (e3, x e32) 
S fl =-e31 x 

r3I sin 0 ’ 

1 
s,* = - e32 x (e32 x e31 1 

r32 sin 0 ’ 

s,3 = tr31 - 
r32 cos 0) e31 + (r32 - r31 cos 0) e32 

r31 r32 sin 0 3 (10) 

where cob is the unit vector pointing from atom a to atom 6, 
and 6 is the angle between two unit vectors (see Fig. la). 

The forces that produce angle-bending act along the s 
vectors and are proportional to their length. The constants 
of proportionality are given by E;(8) = - (&(0)/d@), 
where V(0) is the angle-bending potential, Eq. (1). The 
magnitudes of the forces applied to the end-particles, f, and 
f,, respectively, are derived from Eq. (5): 

F(d) fi =y and F(O) 
fz=y. (11) 

We may reformulate the problem by noting that the s 

Ib) 

.-P..-:_-:-;L 
1’ -f’ 

FIG. 1. (a) Angle-bending displacements; (b) projection-based angle- 
bending algorithm vectors. 

vectors lie in the plane of the particles and are orthogonal to 
the corresponding bonds. Therefore the problem reduces 
projecting the line of centers between particles 1 and 2, r2,, 
into the spaces orthogonal to the bonds. We define a force, 
f’, in the direction of r2i such that the magnitude of its 
components normal to r3, and r32 are precisely those of the 
angle-bending force (see Fig. 1 b). The force is 

f’=- z$ Lr,, 
( > sin 8 r3, rj2’ 

We then define a projection operator [7] 

(12) 

(13) 

The forces on particles 1, 2, and 3 are 

f, = P(r,,) f’, 

f, = -P(r,,) f’, 

and 

f, = - f, - f,. (14c) 

It is easy to verify that the expressions given in Eqs. (14) are 
equivalent to the corresponding expressions derived from 
Eqs. (8)-( 10). 

C. Torsional Force Definition 

The potential energy of a molecule having linearly linked 
sequences of four or more particles has contributions from 
a term that is a function of the torsion angle, 4 (see Fig. 3) 
between the planes defined by atoms (1, 2, 3) and (2, 3, 4) 
of the sequence, where 

cos fj = (e12 x e23) . (e23 x e34) 
sin 8, sin o3 ’ 

The displacement vectors that define torsion are [2] (see 
Fig. 2) 

e12 x e23 
S 11= - r12 sin2 8,' 

r23 - r12 ~0s e2 e12 x e23 s - 
I2 - r23 r,2 sin 6, sin d2 

+ 
cos Q3 e43 x e32 

r23 sin 8, sin e3 ’ 

S t3 = C(14W)l s,2> 

S t4 = C(14)(23)1 s,l. 

(16) 

(17) 

(18) 

(19) 
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FIG. 2. (a) Torsion displacements; (b) I vectors normal to the pivot- 
bond; (c) torsional forces on the end-particles. 

FIG. 3. The torsional potential energy. Insets show the lruns conforma- 
tion at 0” and the gauche+ and gauchem conformations at k 120”, 
respectively. 

line of centers between the end-particles normal to the 
pivot-vector (Fig. 2c), 

(22) 

where l,, are defined as the components of rrrb normal to the 
pivot vector: 

L = P(r3,) f21 j 

l43 = P(h2) r43 y 

b1 = P(r3,) r41. 

Wa) 

Wb) 

(23~ 

The torsional forces on particles 1 and 4 are 
The expressions in square brackets indicate the permutation 
of indices; e.g., (23) means that every instance of 2 should be f, = P(l,,) f’ (24a 
replaced by 3 and vice versa. The s vectors must satisfy the 
condition and 

St1 + St2 + s,g + St4 = 0. (20) f‘j = P(l,,) f’. (24b) 

The magnitude of the torsional force on particle i is given by 
The compensatory forces on particles 2 and 3 are given by 

Eqs. ( 16) and (17), which yield, after simplifying COS(~?~) 
terms, 

-dV(d) 
F(4)i= 7 si. 

( > 
(21) 

We reformulate this problem by noting that the torsional 
forces on the end-particles are orthogonal to the bonds 
between the pivot-particles and the end-particles, i.e., 
f, I rzl and f4 I rd3. They must also be normal to the pivot- The vectors f, and f, are parallel to the plane normal to r32, 
vector, i.e., {f,, fl} I r32. As in the previous section, we but their directions are not easily displayed. 
define a force f’ that is directed along the projection of the These force definitions are easily generalized to the case of 
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more than one end-particle, e.g., F,C- BF,. In the general is not parallel to eZ3, the vectors er2 and eZ3 define a plane 
case, particle 1 may be replaced by n particles of one type, P such that f f”/llf tpII is orthogonal to P. Thus it follows that 
denoted rii, and particle 4 by m particles of another, if ff/ljfpII is orthogonal to P, then ff/l\ffII is parallel to 
denoted r&. In this case, the torsional forces are [8]: ffp/llff”II. From Eq. (24a), 

and 

The forces on particles 2 and 3 are then linear combinations 
of the contributions from all the end-members: 

Va) 

P’b) 

D. Mechanical Equivalence of the Methods 

In this section, we state formally the mechanical 
equivalence of the projection methods to the cross-product 
method and present a rigorous proof of this equivalence. 
Specifically, the forces calculated by the projection method 
are the same as those calculated by the cross-product 
method, i.e., 

ff = p 
1 5 

f,P = fCP 2 ) ff=ffP, fi=fiP, (28) 

where the superscripts cp and p designate cross-product and 
projection, respectively, and the subscripts designate the 
particle on which the forces act. 

First, we note that ff= fip if and only if ff/llffII = 
ffp/llf~+‘ll and llffll = llffpll. Further, we note that f;/llf;II = 
ff”/llffll if and only if ff/llffII is parallel to ffp/llffpll, and 
(f[/llff 11). (ffp/l/ffpll) > 0. Thus the equality ff = f;P is 
verified if we show the validity of the conditions: (a) ff/lJff )I 
is parallel to ffp/llffpll; (b) (ff/llff 11). (ffp/llffpll) > 0; and (c) 
llff II = Ilff”ll. 

Condition (a) follows, since 

ff” e12 x e23 -=-- 
IlfCPII sin e2 ’ (29) 

wl 
fP = fi - 12, ll12, /I 2’ 

and from Eq. (23a), I,, = rz, - r32(r:2r21/(lr32 I/ ‘) and is 
orthogonal to e23. Further, f; is parallel to I,, , and 
f,, = rA1 - r32(rT2r41/jlr32 II’) and is orthogonal to eZ3. Thus, 
ff is orthogonal to eZ3, since it is a linear combination of 
two vectors orthogonal to e23. Finally, since I,, is parallel to 
e,, and (by Eq. (30)) ff is orthogonal to I,,, ff is orthogonal 
to e12. Therefore, ff is orthogonal to P and ff/llfpli is 
parallel to f ;“/ II f ip 11. 

Next, condition (b) follows, since 

p.3- 
f'" 

,lf;pl, llff 11 = -F(d) 
2 e12 x e23 i ~- 

sin e2 sin 4 
l- T 

. r41 - r32 
[ 

r32r41 r21 r32 -- 1 llr32 II2 lIrzl II2 ’ 
(31) 

where i = [ IIf,, II IIZ,, IlIP’. Further, since F(d)’ [ 3 0 and 
the forces are trivially equal if they are all zero, we ignore 
these terms and obtain 

e12 ’ e23 
sin 8, sin 4 

. [r4] - ;l,r,, - A2r2,]. (32) 

But (e,, x e23) .r32 = 0 and (e,2 x ez3) .r21 = 0, so the expres- 
sion simplifies to 

e12 x e23 r41 Ilr,, II sin a -~.~= 
sin e2 sin I$ sin 4 ’ (33) 

where c1 is the angle between f; and I,, (see Fig. 2~). Finally, 
noting that ( Ilr4, II sin ~)lsin 4 = ( Ilr4, II ll~34 II Ml~41 II > 0, it 
follows that (ff/liff 11). (f;“/llfp II ) > 0. 

Finally, condition(c) is verified as follows: We have 

(34) 

llff II = IIf; II sin 4 (35) 

and (by the law of sines) sin LX = (III,, II sin d)/ll14, II. Further, 
substituting 

IIG II =1 Ill41 II F(4)I 

sin 4 1112, II IIf34 II 
(36) 

which is orthogonal to both e,2 and e23. Since the vector e,, and the above expression for sin 01 into Eq. (35) yields 
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llff II = IF(d)llll~21 II. Finally, since Ill,, II = lb,, II sin t&, it 
follows that llff I/ = IF(4)[/( Ilr,, 1) sin 0,) and ff = fp. The 
equality fip = ff is verified by replacing particles 1 and 2 
with particles 3 and 4, respectively, and O2 with 8, in the 
above development. 

The equality f$’ = fip is verified as follows: We note that 
fi=Arff+A$f$ and fp=nypff”+n;J’fg and are equal if 
and only if f f = f ;“, fi = fip”, IIf = LTp, and ,l$’ = 24. Since the 
equalities f; = f fp and ff = fip have been verified, it is 
sufficient to show that 1f = ATp and 2; = 2:“. It follows from 
Eq. (17) that ;Ifp = - (1 - ( llrZl ll//lr32 11) cos 0,). Now, since 

-cosb=~~r,,~~~ (llr2Al)~‘~ (37) 

- (Ilr,, Il/llrsz II ) ~0s 0, = (r&f2, Mlr32 II ‘. Finally, it follows 
from Eq. (25a) that A:, = -(l + (rJ2r21)/llr32 II’) and 
2; = 14. Similarly, since Lip = - (Ilr,, Il/llr3z /I ) cos 13, and 

it follows that -(lh II//h II 1~0s 0, = (rT2r34)/llr32 l12. 
Finally, since 1; = (rTzr34)//lr32 112, it follows that 1; = np 
and fi = fp. The equality f; = fp is verified by noting that 
the terms in cos 8, and cos 8, in Eq. (18) are the same as 
those in Eq. (17). 

III. ALGORITHMIC IMPLEMENTATION 

A. Bond-Angle- Bending 

The bond-angle-bending algorithm consists of three 
phases. In the first, the system coordinates and masses of the 
particles are GATHERed and the center-of-momentum 
coordinates are computed (see Fig. 4). Next, the direction 
of the forces on particles 1 and 2, and the cosine of the 
bond-angle are computed. Finally, the force magnitude, 
-dV(O)/dB, and the forces on the particles are computed 
and then SCATTERed back into the force array. 

Saving intermediate results of the calculations which do 
not change during the simulation will reduce the computa- 
tional cost. Which quantities can be saved will depend on 
whether constraints are used. For example, the reciprocal of 
the sum of the masses for each 3-body force evaluation may 
always be saved. However, if the bond lengths are con- 
strained, the normalization constants l/ljr,, II 2 and l/llr,, II 2 
may also be saved. Thus, constraining one intramolecular 
degree-of-freedom will reduce the cost of computing all 
others. 

Compute center-of-mass 
coordinates 

Gather r 1.2.3 and mm 

Compute force directions for 
end members and cos 8 

fl = P(r3dr2I 

f2 = -W32)r2i 

f= .dV 
d0 

for i=1,2 

f, = f.f, 

fl = -(f1 + f2) 

Scatter 11.2.3 

FIG. 4. 

B. Torsion 

Flowchart detailing bond-angle-bending algorithm. 

In the same way as angle-bending, the torsion algorithm 
consists of three phases (see Fig. 5). The center-of-mass 
coordinates are computed in the first phase. Next, the first 
set of projections and the cosine of the dihedral angle are 
computed. Finally, the force magnitude, - dV(q5)/dd, 
and the forces on the particles are computed and then 
SCATTERed back into the force array. 

Computational cost may be reduced by retaining inter- 
mediate results of the calculations. As with angle-bending, 
the reciprocal of the sum of the masses of the 4-body system 
can always be retained. If the bond lengths are constrained, 
the normalization constants, l/llr, II 2, may be retained. If the 
bond-angles are constrained as well, the expressions 
(r32 ~r~l/llr~~ II21 and ( r3* .r43/l(r32 112) may be retained. 
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Compute center-of-mass 
coordinates 

Gather r1.2.3.4 and m1.2.3.4 

i m,r, 
rem 1-I - 

iml 

for i= 1,4 
r, = r, -rem 

‘1J = r, - r, 

Compute projections 
and cos $ 

1 >, = P&2) 5, 

cos 0 - 121.134 

112 II c34 

+ 

Zompute force magnitude 
and forces 

f= .dV 
W 

fl = f.W121)14I 

f4 = f.P(134)14 I 

f2=f, .(‘-I=& +I=$ f4 

f3 = f4 (1 r%L$ + ‘%g f, 

Scatter fi.2.3.4 

TABLE I 

Time per Operation 

Operation Time (ns) 

SQRT 
Divide 

Multiply 
SAXPY’ 
SDOTh 

76 
33 
15 
13 
IO 

Note. Time per operation of arithmetic procedure required to calculate 
angle-bending and torsion forces. 

u SAXPY(r, A, B) performs the operation A(I) = A(I) + r * B(I). 
h SDOT calculates the dot product of A and B. 

code for angle-bending are compared to those of the con- 
ventional cross-product code in Table II. The projection- 
based code is approximately seven times faster than the 
cross-product-based code. The two algorithms for torsion 
are compared in Table III, where it is seen that the projec- 
tion method is approximately 2.5 times faster than the cross- 
product method. The projection-based algorithms derive 
their greater efficiency primarily from the use of fewer of the 
costly SQRT and divide functions. 

TABLE II 

Angle-Bending Force 

Quantity Required operations 

Projections 

f, 2 dot products, 3 SAXPY, 1 divide 

f2 2 dot products, 3 SAXPY, I divide 

2 divides 66 ns 
FIG. 5. Flowchart detailing torsion algorithm. 4 dot products 40 ns 

6 SAXPY 78 ns 

Total 122 ns 

IV. TESTS 

A. Timing 

All codes were compiled using CFT77 and linked with 
SEGLDR on a Cray XMP-24. The Cray Assembly code 
version of BLAS [9] was used. The times per operation 
presented in Table I are based on simple subroutines that 
perform the indicated operation on pairs of vectors. 
Estimates for the relative execution times of the angle- 
bending and torsion codes are based on these values: we 
have not included the costs of GATHER and SCATTER 
operations, which are common to both codes, nor the 
operations necessary to calculate the magnitude of the force. 

The estimated times of execution of the projection-based 

Ilr32 II 

Cross-products 

I SQRT, 1 divide 

lb,, II 1 SQRT, 1 divide 

k 3 divides 
e31 3 divides 

Sl 6 SAXPY, 2 divides, 6 multiplies 

s2 6 SAXPY, 2 divides, 6 multiplies 

2 SQRT 220 ns 
12 divides 396 ns 

12 multiplies 180 ns 
12 SAXPY 157 ns 

2 dot products 20 ns 

Total 953 ns 

Note. Time to calculate quantities required to evaluate angle-bending 
forces by projection and cross-product based methods. 
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TABLE III 

Torsional Force 

Quantity 

1 SQRT 
4 divides 

15 SAXPY 
6 SDOT 

Total 

llrn II 
lb23 II 
/lr4, II 
e12 
e23 
e43 
S1 
S4 
S2 
s3 

cosz 01 
sin2 19~ 
cos qs 

3 SQRT 
15 divides 

7 multiplies 
18 SAXPY 
5 SDOT 

Total 

Required operations 

Projections 

1 SDOT, 3 SAXPY, 1 divide 
1 SDOT, 3 SAXPY 
1 SDOT, 3 SAXPY 

1 SDOT, 3 SAXPY, 1 divide 
1 SDOT, 3 SAXPY, 1 divide 

2 SAXPY 
2 SAXPY 

1 SDOT, 1 divide, 1 SQRT 

76 ns 
132 ns 
185 ns 
60 ns 

453 ns 

Cross-products 

1 SQRT, 1 divide 
1 SQRT, 1 divide 
1 SQRT, 1 divide 

3 divides 
3 divides 
3 divides 

2 divides, 6 multiplies, 3 SAXPY 
2 divides, 6 multiplies, 3 SAXPY 

1 divide, 6 SAXPY 
1 divide, 6 SAXPY 

1 SDOT, 1 multiply 
1 subtraction 

1 SDOT 

228 ns 
495 ns 
105 ns 
234 ns 

50 ns 

1112 ns 

Note. Time to calculate quantities required to evaluate torsion forces 
by projection and cross-product methods. 

CONCLUSIONS 

We have analyzed the problem of efficiently computing 
angle-bending and torsion forces in molecular dynamics 
simulations. Our analysis concerns two aspects of this 
problem: (1) the inherent complexity of calculating angle- 
bending and torsion forces; and (2) how the nature of this 
complexity allows a general scheme for partitioning of the 
calculations for efficient vector computation. Further, given 
specific geometrical constraints, there is an additional 
increase in the efficiency of these calculations. The results 
of our comparisons demonstrate the efficiency of this 
approach. 
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